Materials for the Space Age

London – National Physics Laboratory 2008

New materials technologies for surviving the space environment?

GELE

TITI

Berend Winter bw@mssl.ucl.ac.uk

What is MSSL?

- Mullard Space Science Lab
- University Department
 - Part of University College London
 - Space and Climate Physics
 - Strong Engineering Involvement
 - Largest UK university based space research and engineering group
 - 40 years of space research and instrumentation projects
 - Involved in 273 missions to date
- MSSL: Working along side Scientists within one location
 - Focus on and deliver what they want

Materials KTN 2008 - Materials for the Space Age

Why Space?

- Astronomy at "other way si
- Remote Sensing
- In Situ
- Communication
- Navigation
- Military

Materials KTN 2008 - Materials for the Space Age

New Materials – Do we want them?

- No
 - Introduction of new materials is time consuming and expensive
 - It ruins the chance of winning any proposal
 - TRL of your application will be (too) low
- New materials will only be applied if it is really necessary
 - They require "road mapping"
 - They require time and money

UCL

ESA - Technology Readiness Level

- 1. Basic principles observed and reported
- 2. Technology concept and/or application formulated
- 3. Analytical & experimental critical function and/or characteristic proofof-concept
- 4. Component and/or breadboard validation in laboratory environment
- 5. Component and/or breadboard validation in relevant environment
- 6. System/subsystem model or prototype demonstration in a relevant environment (ground or space)
- 7. System prototype demonstration in a space environment
- 8. Actual system completed and "Flight qualified" through test and demonstration (ground or space)
- 9. Actual system "Flight proven" through successful mission operations

New Materials at MSSL?

- We don't develop new materials
- We do however
 - Work together with suppliers to earmark new materials or new applications and help to qualify
 - Mostly coatings/plating/paint/adhesives
 - Peel testing
 - Thermal cycling (down to cyrogenic temperatures)
 - Vibration testing if applicable
 - Outgassing

Some of the areas where we (might) look for new material applications

- XEUS and SPICA
- FPA design
 - Support detector box
 - Gradient 4.5 to 1.7 K
 - Mass 2 to 4 kg
 - Parasitic via support <1 mW (ROM)
 - Detector Support (TES/KID and such)
 - Gradient 0.05 to 1.7 K
 - Mass 0.5 kg
 - Parasitic via support <1 micro-W (ROM)
- We need thermal conductance properties below 1K

Thermal Conductance Around and Below 1K

Penetrators

Track record

No survivable high velocity impacting probe has been successfully landed on any extraterrestrial body

Mare96 (Russia) failed to leave Earth orbit

DS2 (Mars) NASA 1999

Japanese Lunar-A cancelled (now planned to fly on Russian Lunar Glob)

Many paper studies and ground trials

Materials KTN 2008 - Materials for the Space Age

MoonLITE

• Delivery and Comms Spacecraft (Orbiter).

Deliver penetrators to ejection orbit. provide pre-ejection health status, and relay communications.

- Orbiter Payload: 4 Descent Probes (each containing 10-15 kg penetrator + 20-25 kg de-orbit and attitude control).
- **Landing sites:** Globally spaced Far side, Polar region(s), One near an Apollo landing site for calibration.
- **Duration**: >1 year for seismic network. Other science does not require so long (perhaps a few Lunar cycles for heat flow and volatiles much less).
- Penetrator Design: Single Body for simplicity and risk avoidance. Battery powered with comprehensive power saving techniques.

ection orbit. th status, ns. Escent Probes g penetrator

Polar comms orbiter

pollo 1

[≜]UCI

Materials KTN 2008 - Materials for the Space Age Penetrators Delivery System

- Launch from spacecraft
- Spin stabilise
- Fire de-orbit motor
- Re-orient
- Separate penetrator from delivery system
- Impact (300 m/s)

Test Track – MoD examples

What Do We Need?

- High impact (20,000 to 40,000 g) resistive:
 - Batteries
 - Maximised mAh
 - Vacuum compatible would be nice
 - Operating for 2 years
 - Preferably working at -100 Celsius
 - Thermal insulation along the penetrator shell
 - Enable us to measure moon regolith thermal gradient along the penetrator (without disturbing it)
 - Currently we are thinking to use CFRP
 - Alternatively push thermometers into the regolith over a long distance (memory metals?)

Thank you