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Miniaturisation
 

for Space
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Microsystems in space today

• Microdevices, mainly sensors, used in particular cases.

• Sensors and microdevices under development include:
– MEMS rate sensor
– Accelerometers
– MEMS RF Switches
– Life Marker Chip for ExoMars
– Micro Shutter Arrays
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Challenges for bringing microsystems to space

Microsystems for space today still suffer from:
Poor heritage

Insufficient integration (bulky interfaces, 
packages, and harnesses)
Little space technology experience in 

microsystems industry
Little microsystems experience in space 

industry
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Smart materials

• A smart material provide both sensing and actuating capabilities, possibly also 
responding to the sensed input, 
with or without feedback loop.

– Piezoelectrics with electromechanical coupling
– shape-memory materials that remember their original shape
– electrorheological fluids with adjustable viscosities
– chemical sensors which mimic the human nose
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Functional Materials
• The physical and chemical properties of functional materials are sensitive to a 

change in the environment (temperature, pressure, electric field, magnetic 
field, optical wavelength, adsorbed gas molecules, or pH value).

• Functional materials utilize their inherent properties and functions of their own 
to achieve an designed effect.

– Dielectrics
– Pyroelectrics
– piezoelectrics
– Ferroelectrics
– semiconductors 
– ionic conductors
– superconductors
– electro-optics
– magnetic materials
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Smart and Functional Materials for Microsystems in Space Applications

• Advanced sensor systems (e.g. integrated sensor fusion)
• Integrated power microsystems (PowerMEMS)
• Self-tuning or adaptive systems (e.g. optics, RF)
• Thermal management (micro-coolers, thermal coatings)
• Mechanical dampeners for extremely compliant 

structures (gossamer designs)
• Compact and power-efficient actuator materials for 

mechanisms, valves, etc.
• Rugged and accurate sensor materials for systems 

monitoring
• Space Science instrumentation

– Sensors: electric nose, tongue, etc
– Sample preparation and manipulation systems
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Microsystems Integration

• L0: Feature level
• L1: Device level
• L2: Device package
• L3: Mounting board
• L4: Chassis, box, harness
• L5: Entire system (S/C)

• Sensors
• Actuators
• Integrated Feedback

• →
 

Integration levels merging
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Multifunctional Microsystems example

• Communication function
• Thermal management
• Structure
• Simultaneous triple usage of paraffin

– Low loss antenna substrate
– Thermal heat storage
– Actuator for thermal conductance switch
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Pushing materials into microsystems

• Mainly silicon micromachining and 
thin-film deposition techniques

• Batch manufacturing is preferred to 
enable mass production

• Complex process sequences can 
ruin smart and functional materials

• How will the microsystem be 
packaged?

• How will the smart or functional 
material be addressed?
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System-level Functions with Materials

• Smart and functional materials can provide system-level functions to 
integrated microsystems and spacecraft systems

• Smart and functional materials can improve significantly on the integration 
level of microsystems.

• Smart and functional materials are instrumental to future highly integrated 
complex microsystems for space.
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The NEOMEx
 

Case

• NEOMEx: Near Earth Object Micro Explorer

• Objective:
 

To perform close-up scientific 
investigations on several sites on a Near Earth 
Object.

• Constraints:
 

Extreme mass-limitation, 5 kg 
platform,  2-4 kg payload of 10-15 W

• Challenge:
 

use microsystems integrated in a 
system to gain performance with respect to mass.

• Explorer mission applications as first target.
– Possible mission enabler
– Mass saver

Courtesy of JAXA

ESA Don Qiuixote

 

concept
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Microsystem-based nanospacecraft

NEOMEx

Platform system Science Payload

Propulsion Power

Structure Avionics

Thermal

TT&C OBDH AOCS

NEOMEx

Platform system Science Payload

Propulsion Power

Structure Avionics

Thermal

TT&C OBDH AOCS

short 
distance 
allows optical 
microsystem

 instrument
 

short 
distance 
allows optical 
microsystem

 instrument

multifunctional 
antenna and thermal 

management (battery)
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management (battery)

SS and STR sensors on 
chip – modular, minimal 
mass and power, 
thrusters – low 
lifetime, free-flyer

 

SS and STR sensors on 
chip – modular, minimal 
mass and power, 
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lifetime, free-flyer

Plug-and-play, 
distribution vs central

Plug-and-play, 
distribution vs central

Low power & good linearity TX combination, 
RX use analogue MMIC for power reduction. 

Multifunctional antenna system.

Low power & good linearity TX combination, 
RX use analogue MMIC for power reduction. 

Multifunctional antenna system.
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MFS, module 
integration in 
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Modularity, reusability, integration

• General platform with mission-specific platform and 
payload modules

• Modularity and integration on system-of- 
microsystems level with allow maximum reusability

• Appropriate selection from a set of microsystem 
modules, according to the mission

• Microdevices
 

to microsystems, microsystems into 
systems-of-microsystems 

– without compromising the miniaturization or 
performance.

AOCSAOCS

PowerPower

COMMSCOMMS

PropulsionPropulsion

StructureStructure

ThermalThermal

System design and 
Architecture 

System design and 
Architecture
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Materials in NEOMEx

• Thermal domain
– Smart thermal control coatings
– Thermal management microsystems

• Power Domain
– Batteries
– Power management devices, micro-power converters

• Packaging and Integration
– Multifunctional structures for microsystem integration
– Connectors and interfaces

Above: Courtesy of CERN, 
Below: Courtesy of Luke 
Lee, ETH, Zürich.
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Thank You for your attention!

… more questions?
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