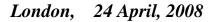


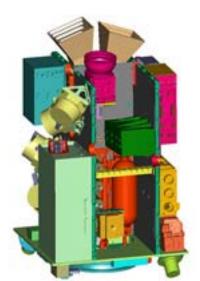
Smart and Functional Materials for Microsystems in Space Applications

Johan Köhler European Space Agency

1



Miniaturisation for Space



ÚE.

Microsystems in space today

- Microdevices, mainly sensors, used in particular cases.
- Sensors and microdevices under development include:
 - MEMS rate sensor
 - Accelerometers
 - MEMS RF Switches
 - Life Marker Chip for ExoMars
 - Micro Shutter Arrays

Challenges for bringing microsystems to space

Microsystems for space today still suffer from:

💛 Poor heritage

Insufficient integration (bulky interfaces, packages, and harnesses)

😕 Little space technology experience in

microsystems industry ESP, Gi S navigation, roll Displays (from 2009) Content, established Little microsystems experience in space Airbag accelerameters establish industry RF MEMS reference

Pressure, flow sensors for engine management, air intake established

Legend

- Inertial sensors
- Pressure, flow
- Infrared, optic
- RF, other

oscillators (from 2009)

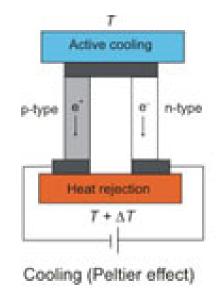
TPMS pressure + accel + temp (+ energy scavengers from 2012)

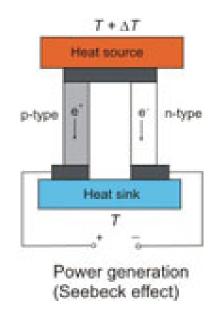
Pressure, accelerometer, gyro for side airbag sensing & deployment, established

Flow sensors for HVAC 2008? less likely

Source: WTC www.wtc-consult.de

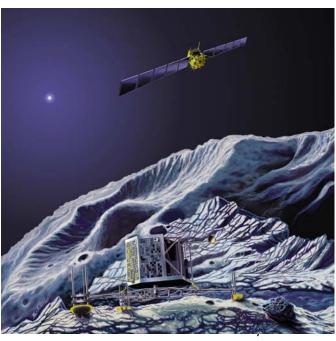
Smart materials


- A smart material provide both sensing and actuating capabilities, possibly also responding to the sensed input, with or without feedback loop.
 - Piezoelectrics with electromechanical coupling
 - shape-memory materials that remember their original shape
 - electrorheological fluids with adjustable viscosities
 - chemical sensors which mimic the human nose



Functional Materials

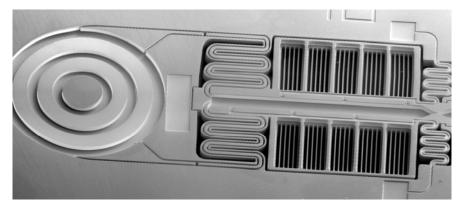
- The physical and chemical properties of functional materials are sensitive to a change in the environment (temperature, pressure, electric field, magnetic field, optical wavelength, adsorbed gas molecules, or pH value).
- Functional materials utilize their inherent properties and functions of their own to achieve an designed effect.
 - Dielectrics
 - Pyroelectrics
 - piezoelectrics
 - Ferroelectrics
 - semiconductors
 - ionic conductors
 - superconductors
 - electro-optics
 - magnetic materials



Smart and Functional Materials for Microsystems in Space Applications

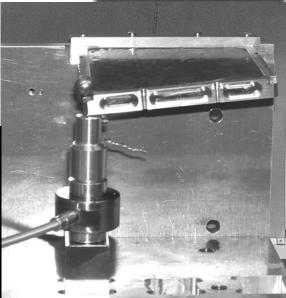
- Advanced sensor systems (e.g. integrated sensor fusion)
- Integrated power microsystems (PowerMEMS)
- Self-tuning or adaptive systems (e.g. optics, RF)
- Thermal management (micro-coolers, thermal coatings)
- Mechanical dampeners for extremely compliant structures (gossamer designs)
- Compact and power-efficient actuator materials for mechanisms, valves, etc.
- Rugged and accurate sensor materials for systems monitoring
- Space Science instrumentation
 - Sensors: electric nose, tongue, etc
 - Sample preparation and manipulation systems

Domain interactions


	Mecha- nical	thermal	electric	magnetic	radiation	Chemi- cal
mechanical	acoustics, fluidics	friction	piezo- electricity, piezo- resisitivity	piezo- magnetism	tribolumin- iscense	-
thermal	thermal expansion	-	pyro- electricity, Seebeckeff.	-	Radiation heat	reaction
electric	piezo- electricity Electro- striction	resistive heat, Peltier eff.	Langmuir probe	Electro- magnetism	electro- lumin- iscense	electro- lysis
magnetic	magneto- striction	thermo- magnetism	magneto- resistance	-	-	-
radiation	Radiation pressure	bolometry	photo- electricity	-	-	photo- reaction
chemical	Hygro- metry April. 2008	calorimetry	Electro- galvanic cell	NMR	chemo- lumin- iscense	- 8

Microsystems Integration

- L0: Feature level
- L1: Device level
- L2: Device package
- L3: Mounting board
- L4: Chassis, box, harness
- L5: Entire system (S/C)
- Sensors
- Actuators
- Integrated Feedback
- \rightarrow Integration levels merging



Multifunctional Microsystems example

- Communication function
- Thermal management
- Structure
- Simultaneous triple usage of paraffin
 - Low loss antenna substrate
 - Thermal heat storage
 - Actuator for thermal conductance switch

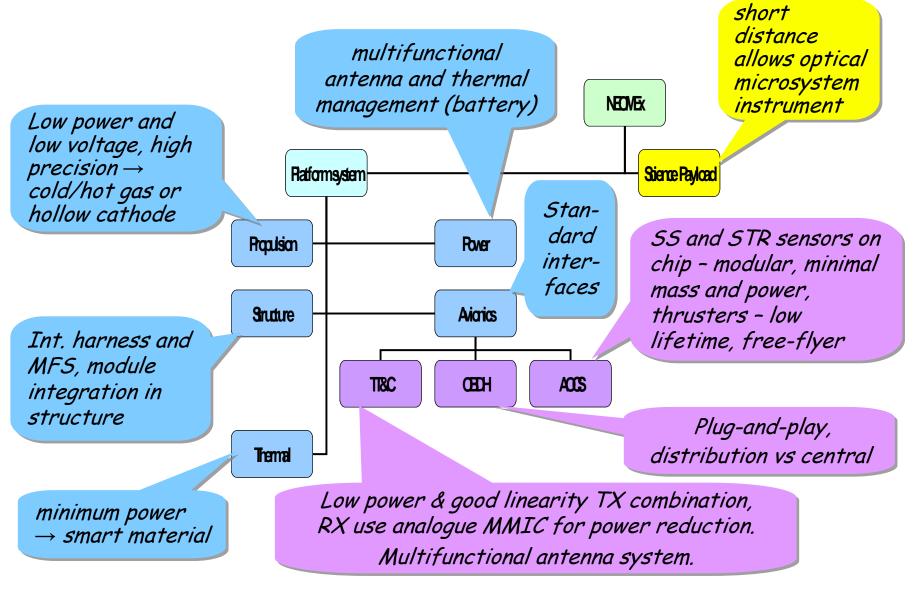


Pushing materials into microsystems

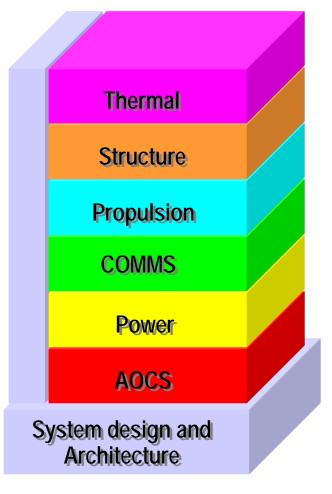
- Mainly silicon micromachining and thin-film deposition techniques
- Batch manufacturing is preferred to enable mass production
- Complex process sequences can ruin smart and functional materials
- How will the microsystem be packaged?
- How will the smart or functional material be addressed?

System-level Functions with Materials

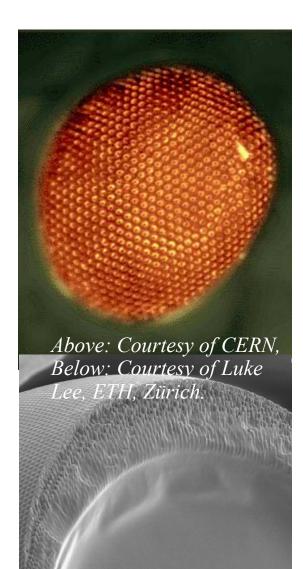
- Smart and functional materials can provide system-level functions to integrated microsystems and spacecraft systems
- Smart and functional materials can improve significantly on the integration level of microsystems.
- Smart and functional materials are instrumental to future highly integrated complex microsystems for space.


The NEOMEx Case

- NEOMEx: Near Earth Object Micro Explorer
- **Objective:** To perform close-up scientific investigations on several sites on a Near Earth Object.
- **Constraints:** Extreme mass-limitation, 5 kg platform, 2-4 kg payload of 10-15 W
- **Challenge:** use microsystems integrated in a system to gain performance with respect to mass.
- Explorer mission applications as first target.
 - Possible mission enabler
 - Mass saver


Microsystem-based nanospacecraft

Modularity, reusability, integration


- General platform with mission-specific platform and payload modules
- Modularity and integration on system-ofmicrosystems level with allow maximum reusability
- Appropriate selection from a set of microsystem modules, according to the mission
- Microdevices to microsystems, microsystems into systems-of-microsystems
 - without compromising the miniaturization or *performance*.

Materials in NEOMEx

- Thermal domain
 - Smart thermal control coatings
 - Thermal management microsystems
- Power Domain
 - Batteries
 - Power management devices, micro-power converters
- Packaging and Integration
 - Multifunctional structures for microsystem integration
 - Connectors and interfaces

Thank You for your attention!

... more questions?