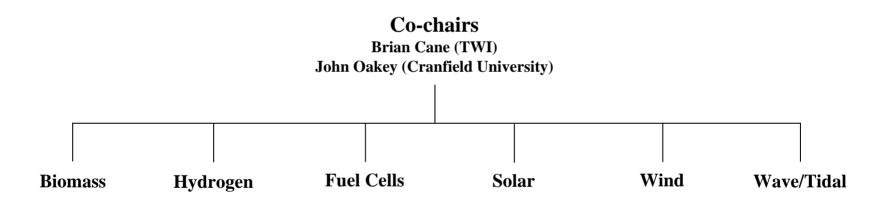


Alternative Energy Task Group

Alternative Energy Task Group

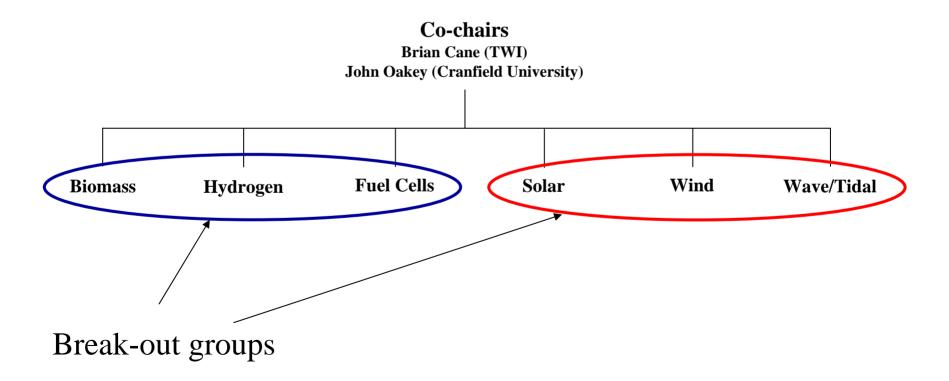
Town Meeting – 24 November 2006


Alternative Energy Task Group - Scope

- Biomass and Biofuels
- Fuel Cells
- Hydrogen
- Solar
- Wave/tidal
- Wind

Alternative Energy Task Group

Life Cycle Materials Issues & Challenges


- Design & manufacture/installation (capital/development costs)
- Life Management (O&M costs)
- Decommissioning/re-cycling

Materials (and related manufacturing & reliability) issues are central to reducing life-cycle costs of the associated systems

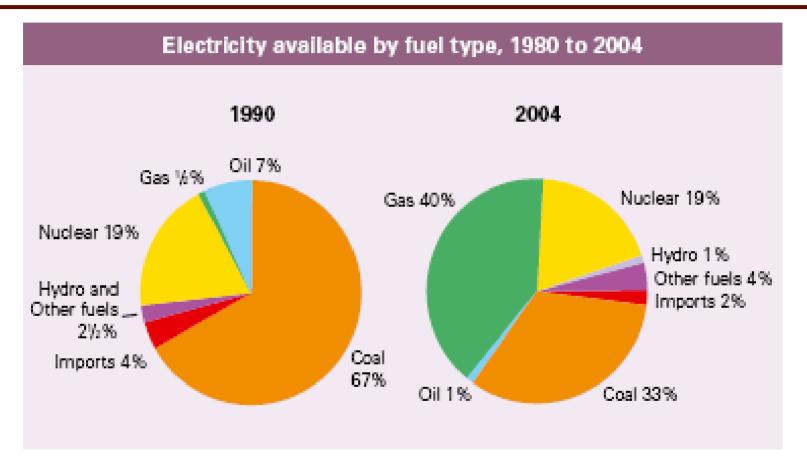
Alternative Energy Task Group

Alternative Energy Task Group

• Biomass - John Oakey

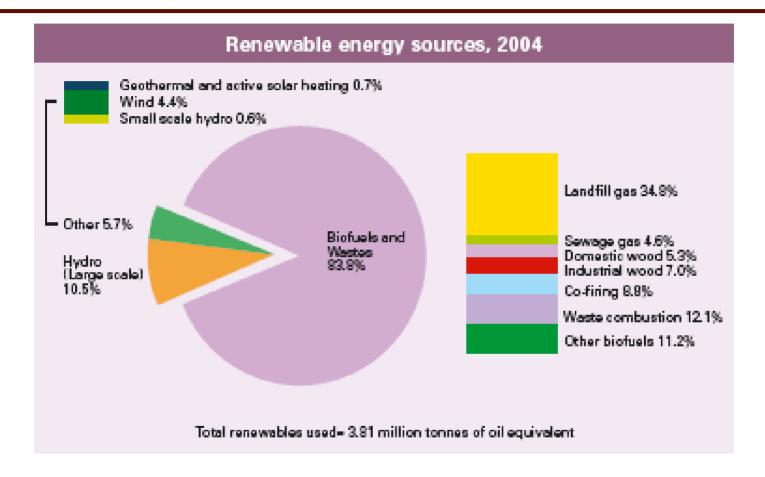
- Brian Cane

- Wind
- Hydrogen
- Solar
- Wave/tidal
- Fuel Cells John Kilner



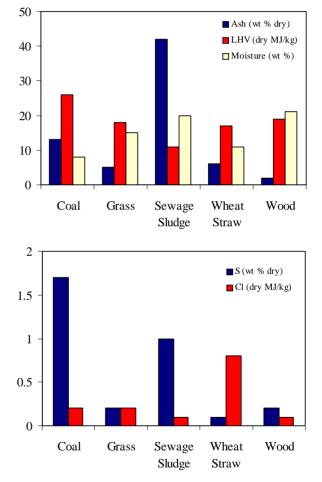
Biomass

John Oakey Energy Technology Centre Cranfield University



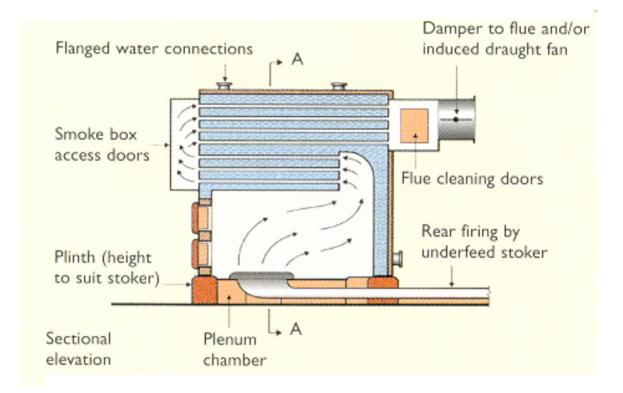
DTI: UK Energy in Brief 2005

Source. DTI Digest of UK Energy statistics


Alternative Energy Task Group

Materials UK

Types of Possible Biomass Fuels


- Agricultural/domestic waste – wood chips, sawdust, bark, straw, rice husks, bagasse, coconut fibre, sewage sludge, etc.
- Energy crops
 - willow, miscanthus, reed canary grass, eucalyptus, etc.

Small Combustion Plants

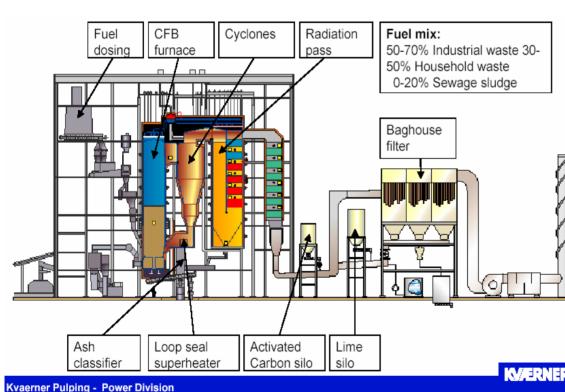
75 MW CFB Boiler - Norrköping

furnace 50-70% Industrial waste 30dosina pass 50% Household waste 0-20% Sewage sludge Baghouse filter ÓН F Ash Loop seal Activated Lime classifier superheater Carbon silo silo KV/ERNER

Fuel

6 < NCV < 25 MJ/kg 5 < Moisture < 60 %

Steam


470 °C 6.5 MPa

· Capacity and load range 75 MW_{th} at MCR 65 - 110 % of MCR

Fuel mix:

- 50 70% Industrial waste
- 30 50% Household waste
- 0 20% Sewage sludge

Pulp & Paper

Biomass Combustion Materials and Related Issues

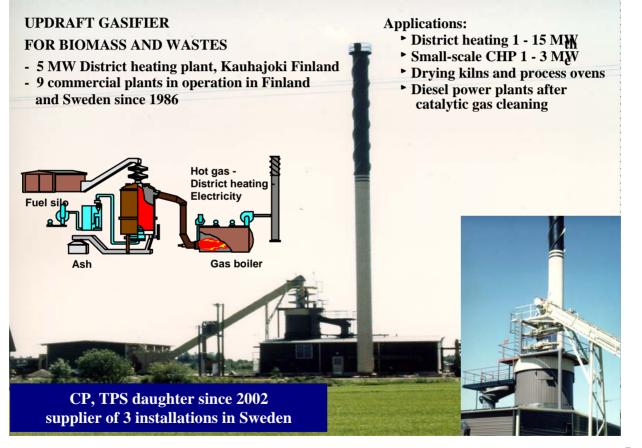
- Fouling and corrosion of superheaters
- Fuel variability CV, moisture, etc.
- Contaminants S, Cl, trace metals, etc.
- Fuel feeding/blending
- Fuel handling

Materials

Owned by the materials communit

- Flue gas cleaning
- Co-firing reduces risks

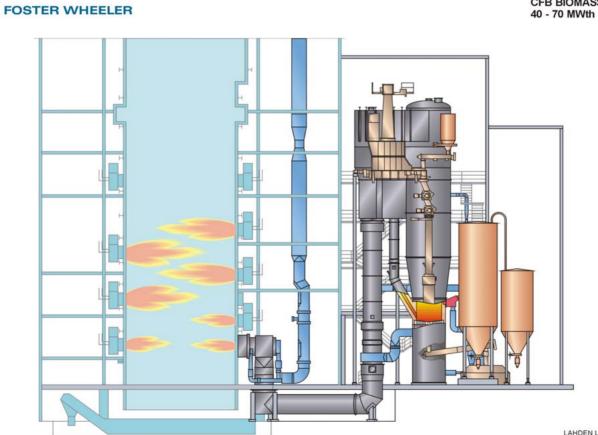
Superheater Corrosion in a FB boiler burning forest fuel and building waste



15

Materials UK

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

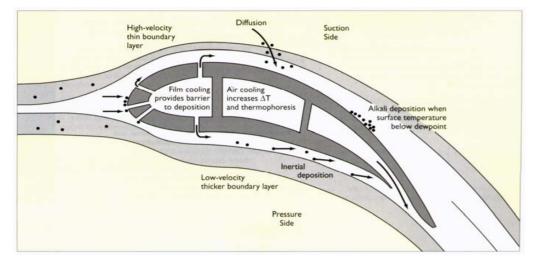

VTT PROCESSES

Town Meeting – 24 November 2006

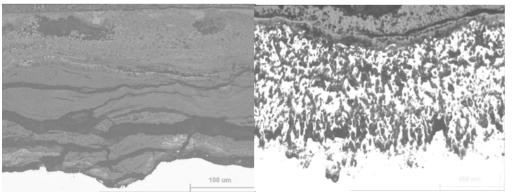
Foster Wheeler CFB Gasifier in Lahti, Finland

CFB BIOMASS GASIFIER 40 - 70 MWth

> LAHDEN LÄMPÖVOIMA KYMIJÄRVI POWER PLANT KYMIJÄRVI, FINLAND



Biomass Gasification Combined Cycle



CMSX-4 - 700°C

CMSX-4 – 900°C

Biomass Gasification Materials and Related Issues

- Fouling and corrosion of syngas cooler
- Fuel variability CV, moisture, etc.
- Contaminants S, Cl, trace metals, etc.
- Fuel feeding/blending
- Fuel handling
- Fuel gas cleaning e.g. NH_3 reduction
- Combustion engine and gas turbine deposition and corrosion

Wind : Wave & Tidal : Solar : Hydrogen

Brian Cane TWI Ltd Co-Chair: Alternative Energy Task Group

Alternative Energy Task Group

Town Meeting – 24 November 2006

Wind (onshore & offshore)

Wave & Tidal

Solar (thermal & photovoltaics (PV))

Hydrogen (production/delivery & storage)

Some of the drivers and life-cycle materials challenges

Wind Energy Market

- Installed capacity exceeds 1 GW in July 2005
 - 446 MW was installed in 2005 (90 MW of which offshore)
- Current capacity 1.94 GW (1717 turbines, 135 projects)
- Target of 7.5 GW by 2010 (10% UK capacity)

Wind: main drivers – reduced capital, installation and O&M costs (offshore)

Materials

Design & manufacture/installation

- efficient fatigue design of composites (blades)
- greater use of composites (C-fibre) lightweighting
- high productivity fabrication/installation of foundations
- improved reliability drive train
- anti-fouling & erosion protection coatings- nano structured
- smart structures

Life Management

- remote structural health monitoring & NDT
- risk-based maintenance planning
- damage tolerance and remaining life modelling

Re-cycling

composites (C-fibre)

Wave & Tidal Energy Market

- 10 to 15 years behind wind
- Learning the lessons from Wind
- Accessible UK Wave resource estimated at 50 TWh/yr (DTI ETSU)
- UK Tidal resource of 42 potential sites contributing 36 TWh/y (DTI ETSU)
- Pilot demonstration projects on-going (e.g. MCT, OPD)

Wave & Tidal: main drivers – lower costs & greater performance

Materials

Courtesy Ocean Power Delivery

Courtesy Marine Current Turbines

Design & construction

- efficient fatigue design & fabrication
- use of composites lightweighting/durability
- anti-fouling & erosion/corrosion protection coatings
- durable seals and bearings
- moorings & sea-bed foundations

Life Management

- remote condition/corrosion monitoring & NDT
- risk-based inspection/maintenance planning
- damage tolerance and remaining life modelling

Re-cycling

where composites are used

Solar: main drivers – lower costs, greater performance and durability

Design & manufacture (PV)

- lower cost Si PV processing
- process development for large area thin-film cell designs
- new PV cell types
- anti-reflective & anti-fouling coatings(solar-thermal & PV)

Life Management

- in-field performance & degradation modelling
- effects of meteorological conditions (eg: thermal cycling)

Re-cycling

recovery of Si from spent PV cells

Hydrogen: main drivers – lower cost H2 production, delivery & storage

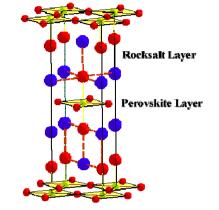
Materials

Design & Manufacture

- volume manufacture of distributed H2 production equipment
- lower cost materials/fabrication for electrolysers
- dissimilar material joining to integrate components/subsystems
- non-permeable coatings/HIC prevention pipelines & bulk storage
- volume manufacturing of C-composite pressure storage systems
- performance of BOP materials in high pressure H2
- reduced cost/weight of solid state storage systems (hydrides)

Life Management

- rapid, non-invasive inspection of storage systems
- damage tolerance/fitness for service of storage vessels


Re-cycling

- C-fibre composites
- coatings on recyclable materials

Fuel Cells and Related Devices Materials Challenges

J. A. Kilner

Department of Materials, Imperial College, London and United Kingdom Energy Research Centre (UKERC)

Devices under development

Solid Oxide Fuel Cells Proton Exchange Membrane Fuel Cells Electrolysers Syngas membranes

Alternative Energy Task Group

Town Meeting – 24 November 2006

fuel cells UK≣

INDUSTRY ASSOCIATION

- •Baxi
- •BOC
- •Calor Gas
- •Ceramic Fuel Cells
- •Ceres Power
- •City University
- •CMR Fuel Cells
- •E.On
- •Fuel Cell Application Facility
- •Fuel Cell Control
- Intelligent Energy

Johnson Matthey
Philip Sharman
Porvair
Precision Micro
Renew Tees Valley
Rolls-Royce Fuel Cells Systems
Rupert Gammon
University of Birmingham
Unitec Ceramics
Voller Energy

Universities Imperial College Newcastle St Andrews Nottingham Loughborough Liverpool Reading Surrey Cambridge City University Birmingham Cranfield

The University of Nottingham

Imperial College London CeresPower

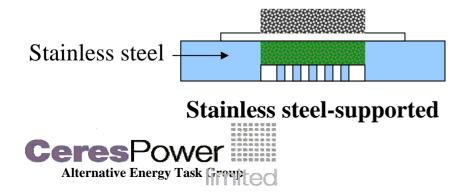
UNIVERSITY OF NEWCASTLE UPON TYNE

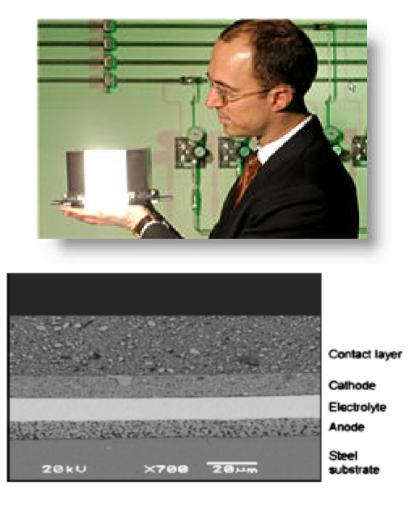
Engineering and Physical Sciences Research Council

Main Industrial Organisations	
Solid Oxide	PEM
Rolls Royce Fuel Cell Systems	CMR Fuel Cells Ltd
Ceres Power	Dart Sensors Ltd.
Fuel Cells Scotland Ltd	Intelligent Energy
QinetiQ	ITM Power PLC
St Andrews Fuel Cells Ltd	JM Fuel Cells
Ot / Indie W3 i dei Oens Eld	QinetiQ
Alkaline	Voller Energy
Alternative Fuel Systems Ltd.	Govt. Labs
Eneco Itd	Defence Science and technology Laboratory [DSTL]
Authany Energy Task Oroup	National Physical Laboratory (NPL)

RRFCS Development Programme Objective – 1MW SOFC Unit

Materials UK

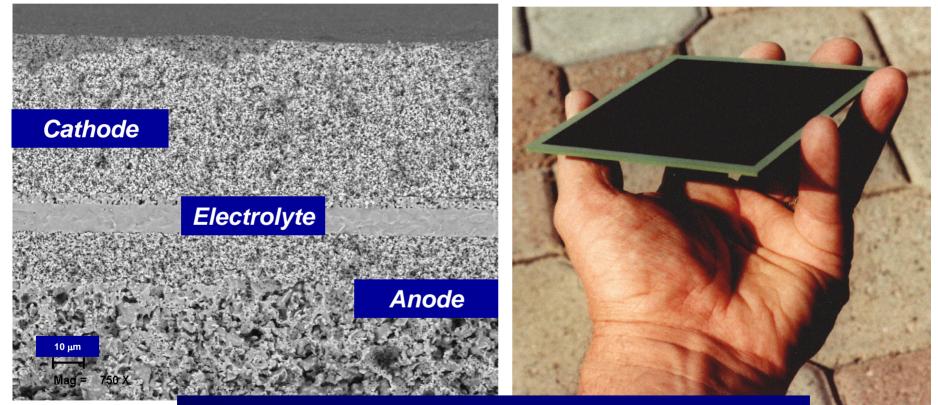

Ceres Power Metal-supported SOFC


 $Ce_{0.9}Gd_{0.1}O_{2-x}$ electrolyte.

 $\begin{array}{l} \text{La}_{0.6} \text{Sr}_{0.4} \text{Co}_{0.2} \text{Fe}_{0.8} \text{O}_{3 \text{-} \delta} \ + \ \text{CGO} \\ \text{cathode, 10-30 } \mu\text{m thick.} \end{array}$

Cr ferritic stainless steel foil support, 100-300 µm thick.

Ni + CGO anode, 20-30 μ m thick.



Typical Ceramic Structure

Anode – nickel-zirconia cermet, ~ 1 mm thick *Electrolyte* – yttria-stabilized zirconia (YSZ), ~ 5 μm thick *Cathode* –lanthanum strontium manganese oxide, ~ 50 μm thick

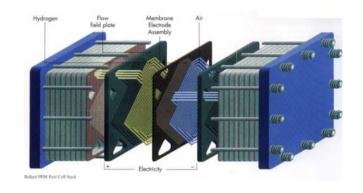
Alternative Energy T

November 2006

Solid Oxide Fuel Cells

Issues:

- Performance
 - Low temperature materials electrolytes and cathodes
 - Microstructural optimisation composite materials
- Cost
 - Ease of manufacture (sintering and co-sintering)
 - Less "exotic" materials
- Durability
 - Redox stable anodes
 - Stable BoP materials for high temperature environments (steam)



PEMFC

Issues:

- Performance
 - Better catalysts (less pt loading)
 - High temperature membranes
 - Better electrodes structures
- Costs
 - Less Pt and cheaper membranes (nafion expensive)
 - Better cathodes
- Durability
 - Stability against peroxide

Thank You

Any Questions?

Alternative Energy Task Group

Town Meeting – 24 November 2006