

The changing face of VICTREX[®] PEEK[™] Polymer

Dave Adkin

Business Manager UK and Ireland

General Properties of VICTREX[®] PEEK[™]

In most applications, it is a combination of three or more of these properties that dictates the use of VICTREX PEEK polymer.

Mech. Properties

unflilled Polymer

property	standard	unit	P⊞K™ 450G	PEEK-HT™
tensile strength	ISO R527	MPa	100	111
elongation at break	ISO R527	%	100	20
secant modulus	ISO R527	GPa	3,6	3,8
flexural strength	ISO R178	MPa	131	185
flexural modulus	ISO R178	GPa	3,9	4,1
Izod impact strength (notched)	ISO 180	kJ/m²	6,4	7
hardness (Rockwell)	ASTM D785	R	126	108
thermal expansion	ASTM D696	10-5/°C	4,7	4,7
Limiting Oxygen Index		%	35	40
density	ISO R183	g/cm³	1,32	1,3
HDT	ISO R75	°C	152	165
RTI	UL 746B	°C	260	260
glass transition	DSC	°C	143	157
melting point	DSC	°C	343	373

Mech. Properties

			compounds			
property	unit	450G	450GL30	450FC30	450CA30	PEEK-HT CA30
tensile strength	MPa	100	156	141	224	220
elongation at break	%	100	2,7	2,5	2	2,1
flexural strength	MPa	131	250	210	355	350
flexural modulus	GPa	3,9	10	8,1	20,2	19
notched Izod	kJ/m²	6,4	10	6,3	9	9
unnotched Izod	kJ/m²	-	40,3	27,5	41,4	50
hardness (Rockwell)	R	126	124	124	132	125
thermal expansion	10 ⁻⁵ /°C	4,7	2,2	2,2	1,5	4,7
density	g/cm³	1,32	1,49	1,48	1,44	1,4
HTD-A (1,8MPa)	°C	152	315	300	315	360

Chemical resistance

- excellent chemical resistance against bases, acids, organic and inorganic reagents even at high temperatures
- excellent hydrolysis resistance
- superior resistance against all automotive fluids, i.e.
 lubricants, grease, break fluid, coolants, ...

Flammability

• best possible rating for flame retardancy :

UL94 at 1,45mm with V-0

- Imiting oxygen index
 0,4mm:
 24%

 3,2mm:
 35%
- lowest smoke emission of all thermoplastics
- low emission of toxic gases, halogen free
- main combustion products are CO and CO₂
- approved in aeronautical and mass transport applications

Processing

- injection moulding
- extrusion
 - sheets, tubes, rods, 2 dimensional complex shapes
 - mono- and multi-filaments
 - film
 - capillaries
 - wire and cable coating
- compression moulding
- powder coating
 - electrostatic, fluidised bed, dispersion
- foaming

HMF Grades

Victrex introduces its new carbon fibre filled compounds which combine easy processability with superior mechanical performance and improved fatigue performance compared to current high strength grade range of carbon filled PEEKTM.

These new products combine Victrex's high flow resins with 20% and 40% carbon fibres utilising a specialised compounding technology.

Compared to existing carbon fibre filled high flow compounds the new 90HMF products stand out with several key advantages (Figure 1)

- More than 10-fold improvement in cyclic fatigue performance (compare Figure 3)
- 90HMF20 has improved melt flow and toughness compared to 30% carbon filled standard grade
- 90HMF40 shows about 50% increase in strength, stiffness and toughness compared to 30% carbon filled standard grade
- Maintaining easy processability

Bearing cage

Rgure 1: Performance space of VICTREX* SOHMF20 and SOHMF40 compared to standard high strength VICTREX* SOCA30

These new high performance products are targeted at applications

- requiring improved strength and stiffness while retaining easy processability compared to higher filled products of equivalent performance
- where improved ductility is required, i.e. large strains during single assembly procedures as in split seal rings or bearing shells.
- where extended endurance in cyclic loadings is required.

HMF Properties

Table 1: Typical performance data of VICTREX* 90HMF20 and 90HMF40

	TEST METHOD	TEST CONDITION	UHIT	90HMF20	SOH MF40
PROPERTY					
Melt viscosity / 0.5mm die	Victrex	400°C	Pats	200	330
-					
Tensile modulus	15O-527	2.3°C	GPa	22	45
Tensile strength	150-527	2.3°C	MRa	290	350
2					
Tensile elongation	150-527	2.3°C	76	1,9	1,3
-					
Rexural modulus	150-178	2.3°C	GPa	19	36
Rexural strength	150-178	2.3*C	MIRa	400	500
ized impact strength (notched)	ISO 180	2.3°C	ki/m ^a	8,5	10
ized impact strength (unnotched)	150 160	2.3°C	ki/m²	55	55
Heat Distortion Temperature	150 7 SA-1	1,8MPa	°C	347	349
Specific gravity	150 1183	2.3°C	g/om*	1,36	1,44

Figure 2: VICTREX* 90HMF40 offers superior stiffness compared to similar VICTREX* high strength compounds, especially at temperatures above the glass transition (Tg= 143°C)

VICOTE® COATINGS

Definitions

Electrostatic (powder) Coating:

- Powders are sprayed directly onto a heated substrate. Powders melt to form the coating typically 100 – 1000 microns (4-40 mil).
- Typical applications Pans, rice cookers, dampers, bushings, cylinder head gaskets, bearings, parts for corrosion resistance

Dispersion Coating

- The formulated aqueous based coating is sprayed onto the substrate which is subsequently heated to form a thin film on the substrate.
- Typical applications cookware, irons, engine piston rings, bearings, large parts in chemical plants for corrosion resistance

Thermal Spray

- Powder is passed through flame to melt and melt the polymer which adheres and solidifies on the cool surface. (Under development)
- Potential Applications Marine, large objects that can't be heated.

PASSION • INNOVATION • PERFORMANCE

Contrex® peek™ film technology

PEEK film secondary conversion processes

- Surface treatment to promote adhesion (plasma, corona, chemical etching, primers)
- Metallization with a variety of metals using lamination, plating, or electro deposition.
- Coat with adhesives for producing tapes
- Co-extrude with other films, and carbon or glass mat fabrics to produce composites
- Extrusion into film tube form
- Laser cutting
- Stamping

victrex

Thermoform to create 3D shapes

PEEK film secondary conversion examples

Co-extruded PEEK Composite Films

Thermoformed PEEK film 5 mils (125 um)

Extruded PEEK Film Tubing

Ibuki Film Laminated Directly to Metal

Metalized PEEK film (5 um to 35 um copper)

Surface treated, adhesive coated PEEK films

Secondary processing partners Europe

- Arthur Krüger GmbH: <u>www.arthur-krueger.de</u>
- Vacuum thermoforming of PEEK film / sheet
- Signed "NDA agreement", first successful trials with 625µm film, and trials with 1 and 1,5mm from Ensinger
- Most active in the aerospace industry, transport and traffic, mechanical engineering sector, medical technology sector, chemical industry, electrical engineering sector
- Machine sizes up to 3000 x 2000 x 1000mm
- Provided thermoformed part for the K-Show

Victrex® PEEK[™] Composites

Victrex believe that ultimately High performance Thermoplastics will be the dominant composite material in the Aerospace industry

Major monolithic carbon fibre reinforcement thermosets (CFRP) and thermoplastics applications in A380 AIRBUS

Automotive - Steering/Suspension

Fuel injection

PEEK™ Benefits

- mechanical properties
- wear properties
- creep performance
- toughness
- cost reduction

- Injector valve seats
- Pump bushing
- Back-up ring
- Membrane guide

Sensors

PEEK™ Benefits

- temperature performance
- mechanical properties
- chemical resistance
- processability
- cost reduction

- EGR sensor
- Throttle body sensor
- Tire pressure sensor
- Oxygen sensor

Door modules

PEEK™ Benefits

- mechanical properties
- creep performance
- toughness
- weight reduction
- cost reduction

- Worm gear window lift
- Thrust pin electric motor
- Cable roller window lift

PEEK™ Benefits

- mechanical properties
- higher efficiency
- chemical resistance
- longer lifetime
- weight reduction
- cost reduction

- Scroll seals
- Swash plates
- Gear mode door control
- Piston shoes

Lighting

PEEK™ Benefits

- mechanical properties
- thermal performance
- outgassing properties
- weight reduction
- cost reduction

- Reflector housings
- Lamp socket
- Xenon light adjustor
- HB LED's

Connector/Sensor

PASSION • INNOVATION • PERFORMANCE

Emerging areas

Turbo

Hybrid

 CO_2

Film

Coating

Actuator

Steering

Details

System:Electrical power steeringApplication:gearMaterial:PEEK™ 450G

Requirements

- > temperature max. 140°C
- > high impact 1.000°/s
- > no dimensional changes
- > low temperature resistance

PEEK™ Benefits

- > wear resistance
- > noise reduction
- > high ductility
- > no moisture absorption

Ball joints

General Disclaimer

 Victrex makes no representations and gives no warranties or undertakings (i) as to the suitability or otherwise of the Materials for use in the manufacture of products by Buyer or any other application or (ii) as to the ownership, validity or subsistence of any intellectual property that may subsist in the Materials or in any application or use thereof. It shall be the sole responsibility of the Buyer to determine the suitability of the Materials for use in the manufacture of products by Buyer or any other application and any use that the Buyer may make of the Materials is at the Buyer's own risk.

