TASK GROUP REVIEWS

Fossil-fuelled Power Generation
Colin Small (Rolls-Royce plc)
Contributors
D J Allen – E.ON UK.
M Barrie – Doosan Babcock Energy Ltd.
J Hannis - Siemens Industrial Turbomachinery.
G McColvin - Siemens Industrial Turbomachinery.
J Oakey – Cranfield University.
S Osgerby - Alstom Power.
C J Small – Rolls-Royce plc.
J Wells - RWE nPower.
Fossil Fuelled Power Generation.

• Contents.
 – Scope.
 – Drivers.
 – Main approaches.
 – Generic technology.
 – Materials challenges 5, 10 and 20 years.
 – UK capability.
Fossil Fuelled Power Generation

• **Scope.**
 – Boilers.
 – Steam Turbines.
 – Gas Turbines.
 – Gasifiers.
 – CO₂ Capture.
Fossil Fuelled Power Generation

• Drivers.
 – Reduction of CO$_2$ emissions.
 – Cost (original manufacturer, ownership/use and end of life disposal).

• Main approaches.
 – Increasing plant efficiency.
 – Co-firing with renewable fuels.
 – CO$_2$ sequestration.
• Generic technologies

 – Surface protection technologies (coatings).
 – Non-destructive evaluation (NDE).
 – Lifting.
 – Repair.
 – Joining.
 – Recycling
• **Key Materials Challenges – 5 Years.**

- Production and characterisation of prototype components manufactured using identified materials and processes.
- Repair and improvement solutions for existing plant and materials.
- Advanced manufacturing development for existing materials and processes aimed at cost reduction, increased performance and integrity.

Refurbishment and Repair of a Steam Turbine – © Sulzer Metco
• Repair and refurbishment.
 – For current materials, affordable extension of life of current plant.
 – For new materials – extended reliable operation. Designed in as part of materials development.
 – Predictable refurbishment intervals (minimum disruption).
• Key Materials Challenges – 10 Years.

 – Development of new material systems (substrate and coatings) based on existing knowledge including behaviour in realistic environments.

 – Development and application of process modelling to new materials to speed up introduction and help define new system solutions.

 – Adopting a total system approach to critical part design and life prediction with multi-material components with joints and coatings.
• Modelling Materials.
 – Linked (Integrated?) models
 • Material systems – substrate and coatings.
 • Process.
 • Properties.
 • Environmental effects.
• **Key Materials Challenges – 20 Years.**

 – Development of novel material systems that will enable high overall efficiencies that will significantly reduce emissions and

 – Initial characterisation to identify most promising approaches.

Image © Berlin TU
• Novel Materials Technology.
 – Gas turbine materials targets for 2020.
 • Density <7g cm\(^{-3}\).
 • T capability >2100K.
 • Oxidation resistance 1450K.
 • Creep +100K over current.
 • Ductility equivalent to Ti.
 • Recyclable
 – Material ????
 – Manufacturing process??
 – Etc.
Skills and Capabilities.
- UK based OEMs with technical capability to develop and deploy new materials.
- End users with need to improve/repair, extend plant life and capability to develop the appropriate solutions.
- Supply chain capability in limited areas to develop and supply new materials.
- Strong academic groups and RTOs involved in materials design, development, NDE, repair, joining and lifing.

UK has capability to rise to challenge.
Thank you

With acknowledgement to the co-authors and all others who contributed to this report